Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Dairy Sci ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38369114

ABSTRACT

This study aimed to set up a Life Cycle Assessment (LCA) approach at level of individual animals to assess the effects of a 3-breed crossbreeding program on the environmental impact of cows. It involved 564 cows, 279 purebred Holstein (HO) and 285 crossbreds (CR), originated from a 3-breed crossbreeding program based on the rotational use of Viking Red, Montebèliarde and HO sires and kept in 2 dairy herds of northern Italy (224 and 340 cows/herd, respectively). The reference unit of the LCA model was the lifetime of cows, from the birth to culling or death. Data were collected at different levels: individual animal-based data referred to the whole life (birth, calving, dry, cull or death dates, and milk production); individual test-date collection of body measures and BCS, used to predict body weight and to estimate energy requirements; common farm-based data concerning herd management (diets composition, and materials used). Data were used to compute: dry matter intake, milk and milk components production, gross income (GI) and income over feed costs (IOFC) pertaining to the lifespan of cows. An individual LCA-derived approach was set up to compute global warming potential (GWP), acidification and eutrophication potential (AP and EP, respectively), and land occupation (LO), which have been associated with different functional units (cow in her whole life or per d of life; kg of milk fat plus protein, and € of GI and of IOFC produced in the herd life). Data were analyzed using a generalized linear model including the fixed effects of genetic group (CR vs HO), farm and their interaction (genetic group x farm). Compared with HO, CR cows completed more lactations (+12%), had earlier first calving (-2 weeks), yielded more fat plus protein in milk both in the lifespan (+8%) and per d of life (+4%). Concerning the environmental impact, when compared with HO herd mates, CR cows had nominal greater emissions per cow in the whole life, similar emissions per d of life and nearly 3% lower GWP, AP and EP per kg of fat plus protein yielded in lifespan. Income over feed costs per unit of emission tended to be nearly 4% greater in CR compared with HO cows. Also the use of land tended to be lower in CR compared with HO in most indicators considered. In conclusion, LCA could be adapted to represent individual animals. Moreover, managing dairy cows according to a 3-breed rotational crossbreeding scheme may be regarded as a strategy that can contribute to mitigate the emissions and to improve the environmental impact of dairy operations.

2.
J Dairy Sci ; 107(3): 1397-1412, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37690724

ABSTRACT

The considerable increase in the production capacity of individual cows owing to both selective breeding and innovations in the dairy sector has posed challenges to management practices in terms of maintaining the nutritional and metabolic health status of dairy cows. In this observational study, we investigated the associations between milk yield, composition, and technological traits and a set of 21 blood biomarkers related to energy metabolism, liver function or hepatic damage, oxidative stress, and inflammation or innate immunity in a population of 1,369 high-yielding Holstein-Friesian dairy cows. The milk traits investigated in this study included 4 production traits (milk yield, fat yield, protein yield, daily milk energy output), 5 traits related to milk composition (fat, protein, casein, and lactose percentages and urea), 11 milk technological traits (5 milk coagulation properties and 6 curd-firming traits). All milk traits (i.e., production, composition, and technological traits) were analyzed according to a linear mixed model that included the days in milk, the parity order, and the blood metabolites (tested one at a time) as fixed effects and the herd and date of sampling as random effects. Our findings revealed that milk yield and daily milk energy output were positively and linearly associated with total cholesterol, nonesterified fatty acids, urea, aspartate aminotransferase, γ-glutamyl transferase, total bilirubin, albumin, and ferric-reducing antioxidant power, whereas they were negatively associated with glucose, creatinine, alkaline phosphatase, total reactive oxygen metabolites, and proinflammatory proteins (ceruloplasmin, haptoglobin, and myeloperoxidase). Regarding composition traits, the protein percentage was negatively associated with nonesterified fatty acids and ß-hydroxybutyrate (BHB), while the fat percentage was positively associated with BHB, and negatively associated with paraoxonase. Moreover, we found that the lactose percentage increased with increasing cholesterol and albumin and decreased with increasing ceruloplasmin, haptoglobin, and myeloperoxidase. Milk urea increased with an increase in cholesterol, blood urea, nonesterified fatty acids, and BHB, and decreased with an increase in proinflammatory proteins. Finally, no association was found between the blood metabolites and milk coagulation properties and curd-firming traits. In conclusion, this study showed that variations in blood metabolites had strong associations with milk productivity traits, the lactose percentage, and milk urea, but no relationships with technological traits of milk. Specifically, increasing levels of proinflammatory and oxidative stress metabolites, such as ceruloplasmin, haptoglobin, myeloperoxidase, and total reactive oxygen metabolites, were shown to be associated with reductions in milk yield, daily milk energy output, lactose percentage, and milk urea. These results highlight the close connection between the metabolic and innate immunity status and production performance. This connection is not limited to specific clinical diseases or to the transition phase but manifests throughout the entire lactation. These outcomes emphasize the importance of identifying cows with subacute inflammatory and oxidative stress as a means of reducing metabolic impairments and avoiding milk fluctuations.


Subject(s)
Fatty Acids, Nonesterified , Milk , Pregnancy , Female , Cattle , Animals , Milk/metabolism , Lactose/metabolism , Ceruloplasmin , Haptoglobins/metabolism , Biomarkers/metabolism , Urea/metabolism , Cholesterol/metabolism , Peroxidase/metabolism , Albumins/metabolism , Oxygen/metabolism
3.
J Dairy Sci ; 107(3): 1413-1426, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37863294

ABSTRACT

In this study we wanted to investigate the associations between naturally occurring subclinical intramammary infection (IMI) caused by different etiological agents (i.e., Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, and Prototheca spp.), in combination with somatic cell count (SCC), on the detailed milk protein profile measured at the individual mammary gland quarter. An initial bacteriological screening (time 0; T0) conducted on individual composite milk from 450 Holstein cows reared in 3 herds, was performed to identify cows with subclinical IMI. We identified 78 infected animals which were followed up at the quarter level at 2 different sampling times: T1 and T2, 2 and 6 wk after T0, respectively. A total of 529 quarter samples belonging to the previously selected animals were collected at the 2 sampling points and analyzed with a reversed phase HPLC (RP-HPLC) validated method. Specifically, we identified and quantified 4 caseins (CN), namely αS1-CN, αS2-CN, κ-CN, and ß-CN, and 3 whey protein fractions, namely ß-lactoglobulin, α-lactalbumin, and lactoferrin (LF), which were later expressed both quantitatively (g/L) and qualitatively (as a percentage of the total milk nitrogen content, % N). Data were analyzed with a hierarchical linear mixed model with the following fixed effects: days in milk (DIM), parity, herd, SCC, bacteriological status (BACT), and the SCC × BACT interaction. The random effect of individual cow, nested within herd, DIM and parity was used as the error term for the latter effects. Both IMI (i.e., BACT) and SCC significantly reduced the proportion of ß-CN and αS1-CN, ascribed to the increased activity of both milk endogenous and microbial proteases. Less evident alterations were found for whey proteins, except for LF, which being a glycoprotein with direct and undirect antimicrobial activity, increased both with IMI and SCC, suggesting its involvement in the modulation of both the innate and adaptive immune response. Finally, increasing SCC in the positive samples was associated with a more marked reduction of total caseins at T1, and αS1-CN at T2, suggesting a synergic effect of infection and inflammation, more evident at high SCC. In conclusion, our work helps clarify the behavior of protein fractions at quarter level in animals having subclinical IMI. The inflammation status driven by the increase in SCC, rather the infection, was associated with the most significant changes, suggesting that the activity of endogenous proteolytic enzymes related to the onset of inflammation might have a pivotal role in directing the alteration of the milk protein profile.


Subject(s)
Cattle Diseases , Milk Proteins , Female , Pregnancy , Cattle , Animals , Caseins , Milk , Whey Proteins , Asymptomatic Infections , Inflammation/veterinary , Peptide Hydrolases
4.
Animal ; 17(10): 100978, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37742500

ABSTRACT

Mastitis, especially the subclinical form, is the most common economic and health problem in dairy cows. Little is known about changes in milk fatty acid (FA) composition according to infection/inflammation status of the mammary gland. The aim of this study was to investigate the associations between naturally occurring subclinical intramammary infection (IMI) from different pathogens, i.e. Streptococcus agalactiae, Staphylococcus aureus, Streptococcus uberis and Prototheca spp., and the detailed milk FA profile assessed at quarter level in Holstein cows. After an initial bacteriological screening (T0) on 450 Holstein cows reared in three dairy herds, we identified 78 cows positive at the bacteriological examination. These animals were followed up at the quarter level two weeks (T1) and six weeks (T2) after T0. In total, 600 single-quarter samples were obtained at T1 and T2. Individual FAs were determined using the gas chromatography analytical method. Investigated traits were 70 individual FAs, 12 FA groups, and six desaturation indices. The associations between subclinical IMI combined with somatic cell count (SCC) and milk FA profile were investigated using a hierarchical linear mixed model (i.e., observational unit was quarter within cow) with the following fixed effects: days in milk (DIM), parity, herd, SCC, bacteriological status (BACT, positive and negative), and the SCC × BACT interaction. The random effect of individual cow nested within herd, DIM and parity was used as the error term for the latter effects. The most significant associations were detected at T2. Notably, IMI reduced the proportions of individual short-chain FA, especially 4:0 and 6:0 (-14%), but increased the proportion of the most abundant medium-chain FA (MCFA), 16:0 (+4%). A reduction in the desaturation indices was observed mostly for 14:1 index (-9%), in line with the reduction in 14:1 (-10%). Somatic cell count significantly affected 14 individual FAs. In particular, samples with high SCC (≥200 000) had significantly lower proportions of 8:0, 10:0, 11:0, 12:0, and 13:0 compared with samples with low SCC (<200 000). Increasing SCC in animals positive at the bacteriological examination were associated with a reduction in total MCFA at T2 (while in negative animals, they remained constant across SCC classes), possible evidence that elongation of the FA chain from 11 to 16 carbons is affected by a combination of infection and SCC. This study showed that subclinical IMI and SCC are mainly associated with reductions in the synthesis of FA and the desaturation process in the mammary gland.

5.
J Dairy Sci ; 106(3): 1853-1873, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36710177

ABSTRACT

In recent years, increasing attention has been focused on the genetic evaluation of protein fractions in cow milk with the aim of improving milk quality and technological characteristics. In this context, advances in high-throughput phenotyping by Fourier transform infrared (FTIR) spectroscopy offer the opportunity for large-scale, efficient measurement of novel traits that can be exploited in breeding programs as indicator traits. We took milk samples from 2,558 Holstein cows belonging to 38 herds in northern Italy, operating under different production systems. Fourier transform infrared spectra were collected on the same day as milk sampling and stored for subsequent analysis. Two sets of data (i.e., phenotypes and FTIR spectra) collected in 2 different years (2013 and 2019-2020) were compiled. The following traits were assessed using HPLC: true protein, major casein fractions [αS1-casein (CN), αS2-CN, ß-CN, κ-CN, and glycosylated-κ-CN], and major whey proteins (ß-lactoglobulin and α-lactalbumin), all of which were measured both in grams per liter (g/L) and proportion of total nitrogen (% N). The FTIR predictions were calculated using the gradient boosting machine technique and tested by 3 different cross-validation (CRV) methods. We used the following CRV scenarios: (1) random 10-fold, which randomly split the whole into 10-folds of equal size (9-folds for training and 1-fold for validation); (2) herd/date-out CRV, which assigned 80% of herd/date as the training set with independence of 20% of herd/date assigned as the validation set; (3) forward/backward CRV, which split the data set in training and validation set according with the year of milk sampling (FTIR and gold standard data assessed in 2013 or 2019-2020) using the "old" and "new" databases for training and validation, and vice-versa with independence among them; (4) the CRV for genetic parameters (CRV-gen), where animals without pedigree as assigned as a fixed training population and animals with pedigree information was split in 5-folds, in which 1-fold was assigned to the fixed training population, and 4-folds were assigned to the validation set (independent from the training set). The results (i.e., measures and predictions) of CRV-gen were used to infer the genetic parameters for gold standard laboratory measurements (i.e., proteins assessed with HPLC) and FTIR-based predictions considering the CRV-gen scenario from a bi-trait animal model using single-step genomic BLUP. We found that the prediction accuracies of the gradient boosting machine equations differed according to the way in which the proteins were expressed, achieving higher accuracy when expressed in g/L than when expressed as % N in all CRV scenarios. Concerning the reproducibility of the equations over the different years, the results showed no relevant differences in predictive ability between using "old" data as the training set and "new" data as the validation set and vice-versa. Comparing the additive genetic variance estimates for milk protein fractions between the FTIR predicted and HPLC measures, we found reductions of -19.7% for milk protein fractions expressed in g/L, and -21.19% expressed as % N. Although we found reductions in the heritability estimates, they were small, with values ranging from -1.9 to -7.25% for g/L, and -1.6 to -7.9% for % N. The posterior distributions of the additive genetic correlations (ra) between the FTIR predictions and the laboratory measurements were generally high (>0.8), even when the milk protein fractions were expressed as % N. Our results show the potential of using FTIR predictions in breeding programs as indicator traits for the selection of animals to enhance milk protein fraction contents. We expect acceptable responses to selection due to the high genetic correlations between HPLC measurements and FTIR predictions.


Subject(s)
Milk Proteins , Milk , Female , Cattle , Animals , Milk Proteins/analysis , Milk/chemistry , Reproducibility of Results , Spectrophotometry, Infrared/veterinary , Caseins/analysis , Spectroscopy, Fourier Transform Infrared/veterinary , Phenotype
6.
J Dairy Sci ; 105(8): 6447-6459, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35840397

ABSTRACT

Udder health in dairy herds is a very important issue given its implications for animal welfare and the production of high-quality milk. Somatic cell count (SCC) is the most widely used means of assessing udder health status. However, differential somatic cell count (DSCC) has recently been proposed as a new and more effective means of evaluating intramammary infection dynamics. Differential SCC represents the combined percentage of polymorphonuclear neutrophils and lymphocytes (PMN-LYM) in the total SCC, with macrophages (MAC) accounting for the remaining proportion. The aim of this study was to evaluate the association between SCC and DSCC and the detailed milk protein profile in a population of 1,482 Holstein cows. A validated reversed-phase HPLC method was used to quantify 4 caseins (CN), namely αS1-CN, αS2-CN, κ-CN, and ß-CN, and 3 whey protein fractions, namely ß-lactoglobulin, α-lactalbumin, and lactoferrin, which were expressed both quantitatively (g/L) and qualitatively (as a percentage of the total milk nitrogen content, %N). A linear mixed model was fitted to explore the associations between somatic cell score (SCS) combined with DSCC and the protein fractions expressed quantitatively and qualitatively. We ran an additional model that included DSCC expressed as PMN-LYM and MAC counts, obtained by multiplying the percentages of PMN-LYM and MAC by SCC for each cow in the data set. When the protein fractions were expressed as grams per liter, SCS was significantly negatively associated with almost all the casein fractions and positively associated with the whey protein α-lactalbumin, while DSCC was significantly associated with αS1-CN, ß-CN, and α-lactalbumin, but in the opposite direction to SCS. We observed the same pattern with the qualitative data (i.e., %N), confirming opposite effects of SCS and DSCC on milk protein fractions. The PMN-LYM count was only slightly associated with the traits of concern, although the pattern observed was the same as when both SCS and DSCC were included in the model. The MAC count, however, generally had a greater impact on many casein fractions, in particular decreasing both ß-CN content (g/L) and proportion (%N), and exhibited the opposite pattern to the PMN-LYM count. Our results show that information obtained from both SCS and DSCC may be useful in assessing milk quality and protein fractions. They also demonstrate the potential of MAC count as a novel udder health trait.


Subject(s)
Caseins , Milk Proteins , Animals , Cattle , Cell Count/methods , Cell Count/veterinary , Female , Lactalbumin , Whey Proteins
7.
J Dairy Sci ; 105(8): 7111-7124, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35688736

ABSTRACT

Ultrasound (US) imaging has been proposed as a noninvasive tool for monitoring liver dysfunction in dairy cows. This study, carried out on 306 clinically healthy Holstein cows in the first 120 d of lactation kept in 2 herds in northern Italy, aimed at investigating the association between US imaging-derived traits, namely predicted liver triacylglycerol content (pTAG, mg/g), liver depth (LD, mm), portal vein depth (PVD, mm) and area (PVA, mm2), and body size measurements, body condition score (BCS), and milk productivity indicators. Transcutaneous US examination, milk sampling, body size measurements (withers height and heart girth), and BCS were collected once from all cows in 10 sampling batches. The body weights (BW) of a subsample of 73 cows were recorded and used together with an existing data set of BW and measures of Holstein Friesian cows (n = 399) to develop a regression equation to predict BW, which was then used to compute productivity indicators by scaling the milk production traits to predicted BW. Body size measures, BCS, milk traits, and productivity indicators were classified (low, medium, and high) in 0.75 units of standard deviation of the residuals generated from a linear model that included the effects of parity, days in milk, and sampling batch. Liver pTAG, PVA, PVD, and LD were analyzed with a sequence of linear mixed models that included the fixed effects of days in milk and parity and the random effect of sampling batch as common terms, whereas the classes of body and milk traits and the productivity indicators were included one by one. The US-related traits were found to be associated with body size measurements and BCS. Specifically, pTAG was inversely related to BCS, whereas PVD and LD increased with increasing heart girth, BCS, and predicted BW. Generally, no relevant associations were observed between the US parameters and milk production traits, including when expressed in terms of productivity. In conclusion, this study suggests that US measures of liver dimensions of clinically healthy cows are related to their size, whereas pTAG concentrations reflect body condition status, with no particular implications for milk production and productivity. Moreover, healthy cows seemed able to counteract the metabolic stress of the first 120 d of the lactation period without straining liver functionality. Finally, US imaging proved to be a promising technique to assess liver metabolic conditions. However, further studies are needed to confirm its potential as a noninvasive tool for monitoring liver conditions in healthy cows.


Subject(s)
Lactation , Milk , Animals , Body Weight , Cattle , Female , Liver/diagnostic imaging , Milk/metabolism , Parity , Pregnancy
8.
J Dairy Sci ; 104(10): 10934-10949, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34253356

ABSTRACT

Mastitis is one of the most prevalent diseases in dairy cattle and is the cause of considerable economic losses. Alongside somatic cell count (SCC), differential somatic cell count (DSCC) has been recently introduced as a new indicator of intramammary infection. The DSCC is expressed as a count or a proportion (%) of polymorphonuclear neutrophils plus lymphocytes (PMN-LYM) in milk somatic cells. These numbers are complemented to total somatic cell count or to 100 by macrophages (MAC). The aim of this study was to investigate the genetic variation and heritability of DSCC, and its correlation with milk composition, udder health indicators, milk composition, and technological traits in Holstein cattle. Data used in the analysis consisted in single test-day records from 2,488 Holstein cows reared in 36 herds located in northern Italy. Fourier-transform infrared (FTIR) spectroscopy was used to predict missing information for some milk coagulation and cheese-making traits, to increase sample size and improve estimation of the genetic parameters. Bayesian animal models were implemented via Gibbs sampling. Marginal posterior means of the heritability estimates were 0.13 for somatic cell score (SCS); 0.11 for DSCC, MAC proportion, and MAC count; and 0.10 for PMN-LYM count. Posterior means of additive genetic correlations between SCS and milk composition and udder health were low to moderate and unfavorable. All the relevant genetic correlations between the SCC traits considered and the milk traits (composition, coagulation, cheese yield and nutrients recovery) were unfavorable. The SCS showed genetic correlations of -0.30 with the milk protein proportion, -0.56 with the lactose proportion and -0.52 with the casein index. In the case of milk technological traits, SCS showed genetic correlations of 0.38 with curd firming rate (k20), 0.45 with rennet coagulation time estimated using the curd firming over time equation (RCTeq), -0.39 with asymptotic potential curd firmness, -0.26 with maximum curd firmness (CFmax), and of -0.31 with protein recovery in the curd. Differential somatic cell count expressed as proportion was correlated with SCS (0.60) but had only 2 moderate genetic correlations with milk traits: with lactose (-0.32) and CFmax (-0.33). The SCS was highly correlated with the log PMN-LYM count (0.79) and with the log MAC count (0.69). The 2 latter traits were correlated with several milk traits: fat (-0.38 and -0.43 with PMN-LYM and MAC counts, respectively), lactose percentage (-0.40 and -0.46), RCTeq (0.53 and 0.41), tmax (0.38 and 0.48). Log MAC count was correlated with k20 (+0.34), and log PMN-LYM count was correlated with CFmax (-0.26) and weight of water curd as percentage of weight of milk processed (-0.26). The results obtained offer new insights into the relationships between the indicators of udder health and the milk technological traits in Holstein cows.


Subject(s)
Cheese , Animals , Bayes Theorem , Cattle/genetics , Cell Count/veterinary , Female , Milk , Milk Proteins , Phenotype
9.
J Dairy Sci ; 104(4): 4822-4836, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33612239

ABSTRACT

The aim of this study was to investigate the associations between differential somatic cell count (DSCC) and milk quality and udder health traits, and for the first time, between DSCC and milk coagulation properties and cheesemaking traits in a population of 1,264 Holstein cows reared in northern Italy. Differential somatic cell count represents the combined proportions of polymorphonuclear neutrophils plus lymphocytes (PMN-LYM) in the total somatic cell count (SCC), with macrophages (MAC) making up the remaining proportion. The milk traits investigated in this study were milk yield (MY), 8 traits related to milk composition and quality (fat, protein, casein, casein index, lactose, urea, pH, and milk conductivity), 9 milk coagulation traits [3 milk coagulation properties (MCP) and 6 curd firming (CF) traits], 7 cheesemaking traits, 3 cheese yield (CY) traits, and 4 milk nutrient recovery in the curd (REC) traits. A linear mixed model was fitted to explore the associations between SCS combined with DSCC and the aforementioned milk traits. An additional model was run, which included DSCC expressed as the PMN-LYM and MAC counts, obtained by multiplying the percentage of PMN-LYM and MAC by SCC in the milk for each cow in the data set. The unfavorable association between SCS and milk quality and technological traits was confirmed. Increased DSCC was instead associated with a linear increase in MY, casein index, and lactose proportion and a linear decrease in milk fat and milk conductivity. Accordingly, DSCC was favorably associated with all MCP and CF traits (with the exception of the time needed to achieve maximum, CF), particularly with rennet coagulation time, and it always displayed linear relationships. Differential somatic cell count was also positively associated with the recovery of milk nutrients in the curd (protein, fat, and energy), which increased linearly with increasing DSCC. The PMN-LYM count was rarely associated with milk traits, even though the pattern observed confirmed the results obtained when both SCS and DSCC were included in the model. The MAC count, however, showed the opposite pattern: MY, casein index, and lactose percentage decreased and milk conductivity increased with an increasing MAC count. No significant association was found between PMN-LYM count and MCP, CF, CY, and REC traits, whereas MAC count was unfavorably associated with MCP, CF traits, some CY traits, and all REC traits. Our results showed that the combined information derived from SCS and DSCC might be useful to monitor milk quality and cheesemaking-related traits.


Subject(s)
Cheese , Milk , Animals , Caseins , Cattle , Cell Count/veterinary , Female , Italy
10.
J Dairy Sci ; 102(6): 5254-5265, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30904297

ABSTRACT

The aim of this study was to perform genetic, genome-wide association (GWAS), and gene-set enrichment analyses with latent variables related to milk fatty acid profile (i.e., fatty acids factor scores; FAF), milk composition, and udder health in a cohort of 1,158 Italian Brown Swiss cows. The phenotypes under study were 12 FAF previously identified through factor analysis and classified as follows: de novo FA (F1), branched-chain FA-milk yield (F2), biohydrogenation (F3), long-chain fatty acids (F4), desaturation (F5), short-chain fatty acids (F6), milk protein and fat contents (F7), odd fatty acids (F8), conjugated linoleic acids (F9), linoleic acid (F10), udder health (F11) and vaccelenic acid (F12). (Co)variance components were estimated for factor scores using a Bayesian linear animal model via Gibbs sampling. The animals were genotyped with the Illumina BovineSNP50 BeadChip v.2 (Illumina Inc., San Diego, CA). A single marker regression model was fitted for GWAS analysis. The gene-set enrichment analysis was run on the GWAS results using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway databases to identify the ontologies and pathways associated with the FAF. Marginal posterior means of the heritabilities of the aforementioned FAF ranged from 0.048 for F12 to 0.310 for F5. Factors F1 and F6 had the highest number of relevant genetic correlations with the other traits. The genomic analysis detected a total of 39 significant SNP located on 17 Bos taurus autosomes. All latent variables produced signals except for F2 and F10. The traits with the highest number of significant associations were F11 (17) and F12 (7). Gene-set enrichment analyses identified significant pathways (false discovery rate 5%) for F3 and F7. In particular, systemic lupus erythematosus was enriched for F3, whereas the MAPK (mitogen-activated protein kinase) signaling pathway was overrepresented for F7. The results support the existence of important and exploitable genetic and genomic variation in these latent explanatory phenotypes. Information acquired might be exploited in selection programs and when designing further studies on the role of the putative candidate genes identified in the regulation of milk composition and udder health.


Subject(s)
Genome-Wide Association Study/veterinary , Genomics , Mammary Glands, Animal/physiology , Mastitis, Bovine/genetics , Milk/chemistry , Animals , Bayes Theorem , Cattle , Cohort Studies , Fatty Acids/metabolism , Female , Genetic Predisposition to Disease , Genotype , Italy , Linoleic Acid/metabolism , Milk/metabolism , Milk Proteins/metabolism
11.
J Dairy Sci ; 100(4): 2564-2576, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28189314

ABSTRACT

Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less influence on the fatty acid profile of buffalo milk than that of cow milk, probably due to a shorter and less severe period of negative energy balance. Parity affected the profiles of a few traits and had the most significant effects on branched-chain fatty acids. This work provided a detailed overview of the fatty acid profile in buffalo milk including also those fatty acids present in small concentrations, which may have beneficial effects for human health. Our results contributed also to increase the knowledge about the effects of some of the major factors affecting buffalo production traits and fatty acid concentrations in milk, and consequently its technological and nutritional properties.


Subject(s)
Buffaloes , Fatty Acids/analysis , Milk/chemistry , Animals , Cattle , Chromatography, Gas , Female , Humans , Lactation
12.
Indoor Air ; 27(3): 690-702, 2017 05.
Article in English | MEDLINE | ID: mdl-27754563

ABSTRACT

In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates.


Subject(s)
Cognition/physiology , Temperature , Thermosensing/physiology , Acclimatization , Adult , Air Conditioning , Air Movements , Air Pollution, Indoor , Analysis of Variance , Female , Humans , Humidity , Male , Psychological Tests , Sick Building Syndrome , Singapore , Students , Surveys and Questionnaires , Task Performance and Analysis , Tropical Climate , Universities , Young Adult
13.
Indoor Air ; 27(4): 852-862, 2017 07.
Article in English | MEDLINE | ID: mdl-28005297

ABSTRACT

Draft is unwanted local convective cooling. The draft risk model of Fanger et al. (Energy and Buildings 12, 21-39, 1988) estimates the percentage of people dissatisfied with air movement due to overcooling at the neck. There is no model for predicting draft at ankles, which is more relevant to stratified air distribution systems such as underfloor air distribution (UFAD) and displacement ventilation (DV). We developed a model for predicted percentage dissatisfied with ankle draft (PPDAD ) based on laboratory experiments with 110 college students. We assessed the effect on ankle draft of various combinations of air speed (nominal range: 0.1-0.6 m/s), temperature (nominal range: 16.5-22.5°C), turbulence intensity (at ankles), sex, and clothing insulation (<0.7 clo; lower legs uncovered and covered). The results show that whole-body thermal sensation and air speed at ankles are the dominant parameters affecting draft. The seated subjects accepted a vertical temperature difference of up to 8°C between ankles (0.1 m) and head (1.1 m) at neutral whole-body thermal sensation, 5°C more than the maximum difference recommended in existing standards. The developed ankle draft model can be implemented in thermal comfort and air diffuser testing standards.


Subject(s)
Air Movements , Ankle/physiology , Personal Satisfaction , Temperature , Thermosensing/physiology , California , Clothing , Female , Humans , Male , Regression Analysis , Students , Universities , Ventilation
14.
J Dairy Sci ; 99(12): 9820-9833, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27665132

ABSTRACT

We investigated the potential of using multivariate factor analysis to extract metabolic information from data on the quantity and quality of milk produced under different management systems. We collected data from individual milk samples taken from 1,158 Brown Swiss cows farmed in 85 traditional or modern herds in Trento Province (Italy). Factor analysis was carried out on 47 individual fatty acids, milk yield, and 5 compositional milk traits (fat, protein, casein, and lactose contents, somatic cell score). According to a previous study on multivariate factor analysis, a variable was considered to be associated with a specific factor if the absolute value of its correlation with the factor was ≥0.60. The extracted factors were representative of the following 12 groups of fatty acids or functions: de novo fatty acids, branched fatty acid-milk yield, biohydrogenation, long-chain fatty acids, desaturation, short-chain fatty acids, milk protein and fat contents, odd fatty acids, conjugated linoleic acids, linoleic acid, udder health, and vaccelenic acid. Only 5 fatty acids showed small correlations with these groups. Factor analysis suggested the existence of differences in the metabolic pathways for de novo short- and medium-chain fatty acids and Δ9-desaturase products. An ANOVA of factor scores highlighted significant effects of the dairy farming system (traditional or modern), season, herd/date, parity, and days in milk. Factor behavior across levels of fixed factors was consistent with current knowledge. For example, compared with cows farmed in modern herds, those in traditional herds had higher scores for branched fatty acids, which were inversely associated with milk yield; primiparous cows had lower scores than older cows for de novo fatty acids, probably due to a larger contribution of lipids mobilized from body depots on milk fat yield. The statistical approach allowed us to reduce a large number of variables to a few latent factors with biological meaning and able to represent groups of fatty acids with a common origin and function. Multivariate factor analysis would therefore be a valuable tool for studying the influence of different production environments and individual animal factors on milk fatty acid composition, and for developing nutritional strategies able to manipulate the milk fatty acid profile according to consumer demand.


Subject(s)
Milk/chemistry , Parity , Animals , Cattle , Factor Analysis, Statistical , Fatty Acids , Female , Lactation , Pregnancy
15.
J Dairy Sci ; 99(11): 8680-8686, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27614834

ABSTRACT

The aims of this study were (1) to assess variability in the major mineral components of buffalo milk, (2) to estimate the effect of certain environmental sources of variation on the major minerals during lactation, and (3) to investigate the possibility of using Fourier-transform infrared (FTIR) spectroscopy as an indirect, noninvasive tool for routine prediction of the mineral content of buffalo milk. A total of 173 buffaloes reared in 5 herds were sampled once during the morning milking. Milk samples were analyzed for Ca, P, K, and Mg contents within 3h of sample collection using inductively coupled plasma optical emission spectrometry. A Milkoscan FT2 (Foss, Hillerød, Denmark) was used to acquire milk spectra over the spectral range from 5,000 to 900 wavenumber/cm. Prediction models were built using a partial least square approach, and cross-validation was used to assess the prediction accuracy of FTIR. Prediction models were validated using a 4-fold random cross-validation, thus dividing the calibration-test set in 4 folds, using one of them to check the results (prediction models) and the remaining 3 to develop the calibration models. Buffalo milk minerals averaged 162, 117, 86, and 14.4mg/dL of milk for Ca, P, K, and Mg, respectively. Herd and days in milk were the most important sources of variation in the traits investigated. Parity slightly affected only Ca content. Coefficients of determination of cross-validation between the FTIR-predicted and the measured values were 0.71, 0.70, and 0.72 for Ca, Mg, and P, respectively, whereas prediction accuracy was lower for K (0.55). Our findings reveal FTIR to be an unsuitable tool when milk mineral content needs to be predicted with high accuracy. Predictions may play a role as indicator traits in selective breeding (if the additive genetic correlation between FTIR predictions and measures of milk minerals is high enough) or in monitoring the milk of buffalo populations for dairy industry purposes.


Subject(s)
Milk/chemistry , Spectroscopy, Fourier Transform Infrared/veterinary , Trace Elements/analysis , Animals , Buffaloes , Calcium, Dietary/analysis , Calibration , Denmark , Female , Lactation , Least-Squares Analysis , Magnesium/analysis , Phenotype , Phosphorus/analysis , Potassium/analysis
16.
J Dairy Sci ; 99(11): 8759-8778, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27568048

ABSTRACT

The aim of this study was to investigate the consequences of reducing the dietary crude protein content, with or without a supply of protected conjugated linoleic acid (CLA), on the milk fatty acid (FA) yield and recovery in 90d ripened cheese. Twenty mid-lactation Friesian dairy cows were reared for 4 periods of 3wk each in groups of 5, following a 4×4 Latin square design. Cows were fed 4 different rations, consisting of a combination of the 2 dietary crude protein levels [150 (CP15) or 123 (CP12) g of crude protein/kg of dry matter], with or without a conjugated linoleic acid supply (80g/d, providing 5.57 and 5.40g/d of C18:2 cis-9,trans-11 and C18:2 trans-10,cis-12, respectively). Milk yield was recorded. Twice in each period, milk samples were analyzed for protein, fat, and lactose content, and 10 L milk samples (pooled by group) were processed to produce 96 cheeses, which were ripened for 90d. Milk and cheese fat were analyzed for their FA profiles. Milk and cheese FA were expressed as daily yields and relative proportions, and nutrient recoveries were computed. Dietary crude protein reduction had small or no effects on the yield and relative presence of FA in milk and cheese, except for a small increase in mid-chain branched saturated fatty acids. The CLA supply strongly reduced the yield of various categories of FA, and had major effects on short-chain FA of de novo synthesis, leading to changes in the relative proportions of the various FA in milk and cheese. The addition of CLA tended to reduce uniformly the recovery of all milk constituents and of short-, medium-, and long-chain FA groups, but we observed large differences among individual FA with apparent recoveries ranging between 640 and 1,710g/kg. The highest recoveries were found for polyunsaturated long-chain FA, the lowest for saturated or monounsaturated short- or medium-chain FA. A notable rearrangement of these FA components, particularly the minor ones, took place during ripening.


Subject(s)
Linoleic Acids, Conjugated , Milk/metabolism , Animals , Cattle , Cheese , Diet/veterinary , Fatty Acids/metabolism , Female , Lactation , Nitrogen
17.
J Dairy Sci ; 99(6): 4558-4573, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26995140

ABSTRACT

Association analyses between candidate genes and bovine milk fatty acids can improve our understanding of genetic variation in milk fatty acid profiles and reveal potential opportunities to tailor milk fat composition through selection strategies. In this work, we investigated the association of 51 single nucleotide polymorphisms (SNP) selected from 37 candidate genes using a functional and positional approach, with 47 fatty acids, 9 fatty acid groups, and 5 Δ(9)-desaturation indices in milk samples from Brown Swiss cows. Individual milk samples were collected from 1,158 Italian Brown Swiss cows, and gas chromatography was used to obtain detailed milk fatty acid compositions. A GoldenGate assay system (Illumina, San Diego, CA) was used to perform genotype 96 selected SNP located in 54 genes across 22 chromosomes. In total, 51 polymorphic SNP in 37 candidate genes were retained for the association analysis. A Bayesian linear animal model was used to estimate the contribution of each SNP. A total of 129 tests indicated relevant additive effects between a given SNP and a single fatty acid trait; 38 SNP belonging to 30 genes were relevant for a total of 57 fatty acid traits. Most of the studied fatty acid traits (~81%) were relevantly associated with multiple SNP. Relevantly associated SNP were mainly found in genes related to fat metabolism, linked to or contained in previously identified quantitative trait loci for fat yield or content, or associated with genes previously identified in association analyses with milk fatty acid profiles in other cow breeds. The most representative candidate genes were LEP, PRL, STAT5A, CCL3, ACACA, GHR, ADRB2, LPIN1, STAT1, FABP4, and CSN2. In particular, relevant associations with SNP located on bovine chromosome 19 (BTA19) were found. Two candidate genes on BTA19 (CCL3 and ACACA) were relevantly associated with de novo short- and medium-chain fatty acids, likely explaining the high heritability values found for these fatty acids (with the exception of C6:0). Two additional genes on BTA19 (CCL2 and GH1) showed associations with saturated and branched-chain fatty acids. Our findings provide basic information on genes and SNP affecting the milk fatty acid composition of dairy cows. These results may support the possibility of using genetic selection to modify milk fatty acid profiles to promote beneficial health-related effects.


Subject(s)
Cattle/physiology , Fatty Acids/genetics , Genome-Wide Association Study/veterinary , Milk/chemistry , Polymorphism, Genetic , Animals , Breeding , Cattle/genetics , Chromatography, Gas/veterinary , Female , Genetic Markers , Italy
18.
J Dairy Sci ; 99(2): 1315-1330, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26709183

ABSTRACT

The aim of this study was to characterize the profile of 47 fatty acids, including conjugated linoleic acid (CLA), 13 fatty acid groups, and 5 Δ(9)-desaturation indices in milk samples from Brown Swiss cows. The genetic variation was assessed and the statistical relevance of the genetic background for each trait was evaluated using the Bayes factor test. The additive genetic, herd-date, and residual relationships were also estimated among all single fatty acids and groups of fatty acids. Individual milk samples were collected from 1,158 Italian Brown Swiss cows and a detailed analysis of fat percentages and milk fatty acid compositions was performed by gas chromatography. Bayesian animal models were used for (co)variance components estimation. Exploitable genetic variation was observed for most of the de novo synthesized fatty acids and saturated fatty acids, except for C4:0 and C6:0, whereas long-chain fatty acids and unsaturated fatty acids (including CLA) were mainly influenced by herd-date effects. Herd-date effect explained large portions of the total phenotypic variance for C18:2 cis-9,cis-12 (0.668), C18:3 cis-9,cis-12,cis-15 (0.631), and the biohydrogenation and elongation products of these fatty acids. The desaturation ratios showed higher heritability estimates than the individual fatty acids, except for CLA desaturation index (0.098). Among the medium-chain fatty acids, C12:0 had greater heritability than C14:0 (0.243 vs. 0.097, respectively). Both C14:0 and C16:0 showed negative additive genetic correlations with the main monounsaturated and polyunsaturated fatty acids of milk fat, suggesting that their synthesis in the mammary gland may be influenced by the presence of unsaturated fatty acids. No correlation was observed between C4:0 and the other short-chain fatty acids (except for C6:0), confirming the independence of C4:0 from de novo mammary fatty acid synthesis. Among the genetic correlations dealing with potentially beneficial fatty acids, C18:0 was positively correlated with vaccenic and rumenic acids and negatively with linoleic acid. Finally, fatty acids C6:0 through C14:0 showed relevant correlations due to unknown environmental effects, suggesting the potential existence of genetic variances in micro-environmental sensitivity. This study allowed us to acquire new knowledge about the genetic and the environmental relationships among fatty acids. Likewise, the existence of genetic variation for most of de novo synthetized fatty acids and saturated fatty acids was also observed. Overall, these results provide useful information to combine feeding with genetic selection strategies for obtaining a desirable milk fatty acids profile, depending on the origin of fatty acids in milk.


Subject(s)
Cattle/genetics , Cattle/metabolism , Chromatography, Gas/veterinary , Environment , Fatty Acids/analysis , Milk/chemistry , Animals , Bayes Theorem , Breeding , Chromatography, Gas/methods , Fatty Acids, Unsaturated/analysis , Female , Genetic Variation , Lactation/genetics , Linoleic Acid/analysis , Phenotype , Quantitative Trait, Heritable
19.
J Dairy Sci ; 98(4): 2759-74, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25682135

ABSTRACT

The objectives of this study were to characterize the variation in curd firmness model parameters obtained from coagulating bovine milk samples, and to investigate the effects of the dairy system, season, individual farm, and factors related to individual cows (days in milk and parity). Individual milk samples (n = 1,264) were collected during the evening milking of 85 farms representing different environments and farming systems in the northeastern Italian Alps. The dairy herds were classified into 4 farming system categories: traditional system with tied animals (29 herds), modern dairy systems with traditional feeding based on hay and compound feed (30 herds), modern dairy system with total mixed ration (TMR) that included silage as a large proportion of the diet (9 herds), and modern dairy system with silage-free TMR (17 herds). Milk samples were analyzed for milk composition and coagulation properties, and parameters were modeled using curd firmness measures (CFt) collected every 15 s from a lacto-dynamographic analysis of 90 min. When compared with traditional milk coagulation properties (MCP), the curd firming measures showed greater variability and yielded a more accurate description of the milk coagulation process: the model converged for 93.1% of the milk samples, allowing estimation of 4 CFt parameters and 2 derived traits [maximum CF (CF(max)) and time from rennet addition to CF(max) (t(max))] for each sample. The milk samples whose CFt equations did not converge showed longer rennet coagulation times obtained from the model (RCT(eq)) and higher somatic cell score, and came from less-productive cows. Among the sources of variation tested for the CFt parameters, dairy herd system yielded the greatest differences for the contrast between the traditional farm and the 3 modern farms, with the latter showing earlier coagulation and greater instant syneresis rate constant (k(SR)). The use of TMR yielded a greater tmax because of a higher instant curd-firming rate constant (k(CF)). Season of sampling was found to be very important, yielding higher values during winter for all traits except k(CF) and k(SR). All CFt traits were affected by individual cow factors. For parity, milk produced by first-lactation cows showed higher k(CF) and k(SR), but delays in achieving CF(max). With respect to stage of lactation, RCT(eq) and potential asymptotic CF increased during the middle of lactation and stabilized thereafter, whereas the 2 instant rate constants presented the opposite pattern, with the lowest (k(CF)) and highest (k(SR)) values occurring in mid lactation. The new challenge offered by prolonging the test interval and individual modeling of milk technological properties allowed us to study the effects of parameters related to the environment and to individual cows. This novel strategy may be useful for investigating the genetic variability of these new coagulation traits.


Subject(s)
Cattle/physiology , Lactation/physiology , Milk/chemistry , Parity , Agriculture , Animals , Cheese , Diet , Female , Food Handling , Milk/physiology , Models, Biological , Phenotype , Pregnancy , Seasons , Silage
20.
J Dairy Sci ; 98(4): 2088-102, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25648807

ABSTRACT

In this study, 2-dimensional gas chromatography (GC × GC) was used to obtain a detailed fatty acid (FA) profile of sheep milk and to evaluate the effects of a rumen-protected conjugated linoleic acid (rpCLA) supply, breed, days in milk (DIM), sampling period, and number of lambs suckling on the FA profile. Twenty-four ewes, from 3 autochthonous breeds of the Veneto Alps (Brogna, Foza, and Lamon), were housed in 6 pens (2 pens/breed), according to DIM (38 ± 23 d) and body weight (61 ± 13 kg). The ewes and their offspring of 3 pens (1 pen/breed) were fed ad libitum a total mixed ration (control), and the other animals received the same diet supplemented with 12 g/d per ewe, plus 4 g/d for each lamb older than 30 d, of an rpCLA mixture. The study lasted 63 d. Two composite milk samples for each ewe were prepared during the first and second months of the trial. The pooled milk samples were analyzed in duplicate for FA profile by 2-dimensional gas chromatography, which allowed us to obtain a detailed FA profile of sheep milk, with 170 different FA detected, including many that were present in small concentrations. The milk relative proportions of individual FA, groups of FA, or FA indices were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC), considering diet, breed, DIM, and sampling period as sources of variation. The random effect of animal was used to test diet, breed, and DIM, whereas the effects of period were tested on the residual. Breed had a small influence on milk FA profile, mainly on branched- and odd-chain FA. Within breed, animal repeatability for the relative proportions of milk FA was notable for almost all monounsaturated FA and for saturated FA with 14 to 19 carbon atoms, except C16:0, and less so for polyunsaturated FA. The inclusion of rpCLA (CLA cis-9,trans-11 and CLA trans-10,cis-12) increased the presence of the same CLA isomers in the milk as well as that of CLA trans-9,trans-11, and decreased the proportions of de novo-synthesized short-chain FA. From a cluster analysis based on the matrix of correlation coefficients among all FA relative proportions, 3 main FA groups were observed: the first included mainly odd- or branched-chain saturated FA, C18:0, C16:0 and CLA trans-10,cis-12; the second included monounsaturated FA or polyunsaturated FA with 16 to 20 carbons, CLA cis-9,trans-11, and CLA trans-9,trans-11; and the third included short- to medium-chain saturated FA, polyunsaturated FA with 2 to 5 double bonds, and 3 CLA isomers not affected by rpCLA addition (CLA trans-11,cis-13, CLA cis-9,cis-11, and CLA cis-10,cis-12).


Subject(s)
Chromatography, Gas/methods , Fatty Acids/analysis , Linoleic Acids, Conjugated/pharmacokinetics , Milk/chemistry , Rumen/metabolism , Animal Feed/analysis , Animals , Breeding , Diet/veterinary , Female , Lactation , Linoleic Acids, Conjugated/administration & dosage , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...